Understanding JSON Schema
Release 2020-12

Michael Droettboom, et al
Space Telescope Science Institute

Feb 07, 2022

Contents

Conventions used in this book 3
I.1 Language-specific nOtes i i e e e e e e e 3
1.2 Draft-specificnotes e e e 4
1.3 Examples oo e e e e e e e e 4
What is a schema? 7
The basics 11
3.1 Hello, World! e e e 11
3.2 Thetypekeyword L e e 12
33 DeclaringaJSON Schema 13
34 Declaring aunique identifier L 13
JSON Schema Reference 15
4.1 Type-specifickeywords L 15
42 SN . . . oo e e e e e e 17
421 Length. o o e e e e e e e 19
422 Regular EXpressions ot it e e e e e e e e e e e e e e 19
423 Format. e e 20
4.3 Regular EXpressions L e e e 22
43.1 Example e e 23
4.4 NUMETICLYPES . . v v v o o i i e e e e e e e e e e e e e e e e 23
O 111 15X 2 24
442 number e 25
443 Multiples e e e e e e 26
444 Range e 26
45 0bJECL e e 29
4.5.1 Properties v v i i e 30
452 Pattern Properties oo e e e e e e e e e e e e e e e 31
4.5.3 Additional Properties e e 32
4.5.4 Unevaluated Properties L o 36
455 Required Properties e 39
456 Property NAmeS v v v v i i e 40
457 SIZe . ..o e 40
4.0 AITAY © . v e 41
4.6.1 Ttems e 42
4.6.2 Tuplevalidation e 43

4.7
4.8
4.9

4.10

4.12

4.13

4.6.3 Unevaluated Items e e e e e

4.6.4 COoNntains v it e e e e e e e e e e e e e e
4.6.5 Length. e e e e e e
4.6.6 UnNIQUENESS o vttt e e e e e e e e e e
boolean e e e e e e e e e e
nUll L e e e e e e e
Generic keywords L e e e e e e e e e
4.9.1 Annotations L. e e e e e e e e e e e e
492 COomMMENtSt te ee e e
493 Enumerated values e e e
494 Constant values o v i e e e e e e e e e e e e e e e
Media: string-encoding non-JSONdata e e
4.10.1 contentMediaType o L e e e e e
4.10.2 contentEncoding e
4.10.3 contentSchema e e e e e e e e e e
4104 Exampleso e e e e e e
Schema Composition i v e e e e e e e e e e e e e e e e e e
4111 allOf . . e
4.11.2 anyOf . . . o L e e
4113 oneOf e e e
4114 NOt. . . . o e e e e e e e e
4.11.5 Properties of Schema Composition e
Applying Subschemas Conditionally e e e
4.12.1 dependentRequired L e e e e
4.12.2 dependentSchemas e
4.12.3 If-Then-Else e e e e e e e e e e
4.12.4 Tmplication L e e e
DeclaringaDialect o . e e e e e e e e e e
413.1 $schema o e e e e e e
4.13.2 Vocabularieso e e e e e e e

Structuring a complex schema

5.1
52

53
54
5.5
5.6
5.7

Schema Identification e e e e e e e e e e e e e e
Base URIL o o e e e e e e
52.1 Retrieval URL e e
522 Sid . .o e e
523 JSONPoInter o it e e e e e e e
524 $anchor e e
el . e
Sdefs . . L e
Recursion L e
Extending Recursive Schemas
Bundling e e e e e e e

6 Acknowledgments

Index

46

73
73
74
74
75
76
76
77
78
79
80
80

83

85

Understanding JSON Schema, Release 2020-12

JSON Schema is a powerful tool for validating the structure of JSON data. However, learning to use it by reading its
specification is like learning to drive a car by looking at its blueprints. You don’t need to know how an electric motor
fits together if all you want to do is pick up the groceries. This book, therefore, aims to be the friendly driving instructor
for JSON Schema. It’s for those that want to write it and understand it, but maybe aren’t interested in building their
own car—er, writing their own JSON Schema validator—just yet.

Note: This book describes JSON Schema draft 2020-12. Earlier versions of JSON Schema are not completely
compatible with the format described here, but for the most part, those differences are noted in the text.

Where to begin?

* This book uses some novel conventions (page 3) for showing schema examples and relating JSON Schema to
your programming language of choice.

* If you’re not sure what a schema is, check out What is a schema? (page 7).

e The basics (page 11) chapter should be enough to get you started with understanding the core JSON Schema
Reference (page 15).

* When you start developing large schemas with many nested and repeated sections, check out Structuring a
complex schema (page 73).

¢ json-schema.org has a number of resources, including the official specification and tools for working with JSON
Schema from various programming languages.

* There are a number of online JSON Schema tools that allow you to run your own JSON schemas against example
documents. These can be very handy if you want to try things out without installing any software.

Contents 1

http://json-schema.org
https://json-schema.org/implementations.html#validator-web%20(online)

Understanding JSON Schema, Release 2020-12

2 Contents

CHAPTER 1

Conventions used in this book

» Language-specific notes (page 3)

* Draft-specific notes (page 4)

» Examples (page 4)

1.1 Language-specific notes

The names of the basic types in JavaScript and JSON can be confusing when coming from another dynamic language.
I’m a Python programmer by day, so I've notated here when the names for things are different from what they are in
Python, and any other Python-specific advice for using JSON and JSON Schema. I'm by no means trying to create a
Python bias to this book, but it is what I know, so I've started there. In the long run, I hope this book will be useful
to programmers of all stripes, so if you’re interested in translating the Python references into Algol-68 or any other
language you may know, pull requests are welcome!

The language-specific sections are shown with tabs for each language. Once you choose a language, that choice will be
remembered as you read on from page to page.

For example, here’s a language-specific section with advice on using JSON in a few different languages:

In Python, JSON can be read using the json module in the standard library.

L

In Ruby, JSON can be read using the json gem.

Understanding JSON Schema, Release 2020-12

For C, you may want to consider using Jansson to read and write JSON.

1.2 Draft-specific notes

The JSON Schema standard has been through a number of revisions or “drafts”. The current version is Draft 2020-12,
but some older drafts are still widely used as well.

The text is written to encourage the use of Draft 2020-12 and gives priority to the latest conventions and features, but
where it differs from earlier drafts, those differences are highlighted in special call-outs. If you only wish to target Draft
2020-12, you can safely ignore those sections.

New in draft 2020-12

Draft 2019-09

This is where anything pertaining to an old draft would be mentioned.

1.3 Examples

There are many examples throughout this book, and they all follow the same format. At the beginning of each example
is a short JSON schema, illustrating a particular principle, followed by short JSON snippets that are either valid or
invalid against that schema. Valid examples are in green, with a checkmark. Invalid examples are in red, with a cross.
Often there are comments in between to explain why something is or isn’t valid.

Note: These examples are tested automatically whenever the book is built, so hopefully they are not just helpful, but
also correct!

For example, here’s a snippet illustrating how to use the number type:

{json schema}

{ "type": "number” }

Simple floating point number:

4 Chapter 1. Conventions used in this book

http://www.digip.org/jansson/

Understanding JSON Schema, Release 2020-12

L

5.0

Exponential notation also works:

L

2.99792458e8

Numbers as strings are rejected:

L

4o

1.3. Examples 5

Understanding JSON Schema, Release 2020-12

6 Chapter 1. Conventions used in this book

CHAPTER 2

What is a schema?

If you’ve ever used XML Schema, RelaxNG or ASN.1 you probably already know what a schema is and you can
happily skip along to the next section. If all that sounds like gobbledygook to you, you’ve come to the right place. To
define what JSON Schema is, we should probably first define what JSON is.

JSON stands for “JavaScript Object Notation”, a simple data interchange format. It began as a notation for the world
wide web. Since JavaScript exists in most web browsers, and JSON is based on JavaScript, it’s very easy to support
there. However, it has proven useful enough and simple enough that it is now used in many other contexts that don’t
involve web surfing.

At its heart, JSON is built on the following data structures:
* object:

{ "key1": "valuel”, "key2": "value2" }
* array:
["first”, "second”, "third"]

e number:

42
3.1415926

* string:
"This is a string”

¢ boolean:

true
false

e null:

Understanding JSON Schema, Release 2020-12

null

These types have analogs in most programming languages, though they may go by different names.

The following table maps from the names of JSON types to their analogous types in Python:

JSON Python
string string

number | int/float

object dict

array list
boolean | bool
null None

45

4 Since JSON strings always support unicode, they are analogous to unicode on Python 2.x and str on Python 3.x.
3 JSON does not have separate types for integer and floating-point.

i

The following table maps from the names of JSON types to their analogous types in Ruby:

JSON Ruby
string String
number | Integer/Float

object Hash

array Array
boolean | TrueClass/FalseClass
null NilClass

6

© JSON does not have separate types for integer and floating-point.

With these simple data types, all kinds of structured data can be represented. With that great flexibility comes great
responsibility, however, as the same concept could be represented in myriad ways. For example, you could imagine
representing information about a person in JSON in different ways:

{

"name"”: "George Washington”,

"birthday”: "February 22, 1732",

"address"”: "Mount Vernon, Virginia, United States”
3
{

"first_name": "George",

(continues on next page)

8 Chapter 2. What is a schema?

Understanding JSON Schema, Release 2020-12

(continued from previous page)
"last_name": "Washington”,
"birthday": "1732-02-22",
"address”: {

"street_address”: "3200 Mount Vernon Memorial Highway",
"city"”: "Mount Vernon",
"state”: "Virginia”,

"country”: "United States”

Both representations are equally valid, though one is clearly more formal than the other. The design of a record will
largely depend on its intended use within the application, so there’s no right or wrong answer here. However, when
an application says “give me a JSON record for a person”, it’s important to know exactly how that record should be
organized. For example, we need to know what fields are expected, and how the values are represented. That’s where
JSON Schema comes in. The following JSON Schema fragment describes how the second example above is structured.
Don’t worry too much about the details for now. They are explained in subsequent chapters.

{json schema}

{
"type": "object”,
"properties”: {
"first_name": { "type": "string" },
"last_name”: { "type": "string" },
"birthday”: { "type": "string"”, "format"”: "date” },
"address”: {
"type": "object”,
"properties”: {
"street_address”: { "type": "string” 3},
"city”: { "type": "string" 3},
"state"”: { "type": "string" },
"country”: { "type" : "string” }
}
}
3
}

By “validating” the first example against this schema, you can see that it fails:

L

{

"name": "George Washington”,

"birthday"”: "February 22, 1732",

"address”: "Mount Vernon, Virginia, United States”
}

However, the second example passes:

Understanding JSON Schema, Release 2020-12

{
"first_name”: "George",
"last_name"”: "Washington”,
"birthday”: "1732-02-22",
"address": {
"street_address”: "3200 Mount Vernon Memorial Highway",
"city”: "Mount Vernon”,
"state"”: "Virginia”,
"country”: "United States”
}
}

You may have noticed that the JSON Schema itself is written in JSON. It is data itself, not a computer program. It’s just
a declarative format for “describing the structure of other data”. This is both its strength and its weakness (which it
shares with other similar schema languages). It is easy to concisely describe the surface structure of data, and automate
validating data against it. However, since a JSON Schema can’t contain arbitrary code, there are certain constraints
on the relationships between data elements that can’t be expressed. Any “validation tool” for a sufficiently complex
data format, therefore, will likely have two phases of validation: one at the schema (or structural) level, and one at
the semantic level. The latter check will likely need to be implemented using a more general-purpose programming
language.

10 Chapter 2. What is a schema?

CHAPTER 3

The basics

Hello, World! (page 11)
e The type keyword (page 12)
* Declaring a JSON Schema (page 13)

* Declaring a unique identifier (page 13)

In What is a schema? (page 7), we described what a schema is, and hopefully justified the need for schema languages.
Here, we proceed to write a simple JSON Schema.

3.1 Hello, World!

When learning any new language, it’s often helpful to start with the simplest thing possible. In JSON Schema, an empty
object is a completely valid schema that will accept any valid JSON.

{json schema}

{12

This accepts anything, as long as it’s valid JSON

42

11

Understanding JSON Schema, Release 2020-12

L

"I'm a string”

L

{ "an": ["arbitrarily”, "nested”], "data": "structure” }

New in draft 6

You can also use true in place of the empty object to represent a schema that matches anything, or false for a schema
that matches nothing.

{json schema}

true

This accepts anything, as long as it’s valid JSON

L
L.

"I'm a string”

L

{ "an": ["arbitrarily”, "nested”], "data": "structure” }

{json schema}

false

"Resistance is futile... This will always faill!!!”

3.2 The type keyword

Of course, we wouldn’t be using JSON Schema if we wanted to just accept any JSON document. The most common
thing to do in a JSON Schema is to restrict to a specific type. The type keyword is used for that.

12 Chapter 3. The basics

Understanding JSON Schema, Release 2020-12

Note: When this book refers to JSON Schema “keywords”, it means the “key” part of the key/value pair in an object.
Most of the work of writing a JSON Schema involves mapping a special “keyword” to a value within an object.

For example, in the following, only strings are accepted:

{json schema}

{ "type": "string” }

L

"I'm a string”

L

42

The type keyword is described in more detail in Type-specific keywords (page 15).

3.3 Declaring a JSON Schema

It’s not always easy to tell which draft a JSON Schema is using. You can use the $schema keyword to declare which
version of the JSON Schema specification the schema is written to. See $schema (page 69) for more information. It’s
generally good practice to include it, though it is not required.

Note: For brevity, the $schema keyword isn’t included in most of the examples in this book, but it should always be
used in the real world.

{json schema}

{ "$schema”: "https://json-schema.org/draft/2020-12/schema” }

In Draft 4, a $schema value of http://json-schema.org/schema# referred to the latest version of JSON
Schema. This usage has since been deprecated and the use of specific version URISs is required.

3.4 Declaring a unique identifier

It is also best practice to include an $id property as a unique identifier for each schema. For now, just set it to a URL at
a domain you control, for example:

3.3. Declaring aJSON Schema 13

Understanding JSON Schema, Release 2020-12

{ "$id": "http://yourdomain.com/schemas/myschema.json"” }

The details of $id (page 75) become more apparent when you start Structuring a complex schema (page 73).

New in draft 6

In Draft 4, $id is just id (without the dollar-sign).

14 Chapter 3. The basics

cHAPTER 4

JSON Schema Reference

4.1 Type-specific keywords

The type keyword is fundamental to JSON Schema. It specifies the data type for a schema.
At its core, JSON Schema defines the following basic types:

* string (page 17)

* number (page 25)

* integer (page 24)

* object (page 29)

* array (page 41)

* boolean (page 49)

* null (page 50)

These types have analogs in most programming languages, though they may go by different names.

15

Understanding JSON Schema, Release 2020-12

The following table maps from the names of JSON types to their analogous types in Python:

JSON Python
string string

number | int/float

object dict

array list
boolean | bool
null None

45

4 Since JSON strings always support unicode, they are analogous to unicode on Python 2.x and str on Python 3.x.
5 JSON does not have separate types for integer and floating-point.

L

The following table maps from the names of JSON types to their analogous types in Ruby:

JSON Ruby
string String
number | Integer/Float

object Hash

array Array
boolean | TrueClass/FalseClass
null NilClass

6

6 JSON does not have separate types for integer and floating-point.

The type keyword may either be a string or an array:
e If it’s a string, it is the name of one of the basic types above.

« If it is an array, it must be an array of strings, where each string is the name of one of the basic types, and each
element is unique. In this case, the JSON snippet is valid if it matches any of the given types.

Here is a simple example of using the type keyword:

{json schema}

{ "type": "number” }

42

16 Chapter 4. JSON Schema Reference

Understanding JSON Schema, Release 2020-12

L

42.0

This is not a number, it is a string containing a number.

L

ngon

In the following example, we accept strings and numbers, but not structured data types:

{json schema}

{ "type": ["number”, "string"] }

L.
L

"Life, the universe, and everything”

L

["Life", "the universe”, "and everything"]

For each of these types, there are keywords that only apply to those types. For example, numeric types have a way of
specifying a numeric range, that would not be applicable to other types. In this reference, these validation keywords are
described along with each of their corresponding types in the following chapters.

4.2 string

e Length (page 19)
* Regular Expressions (page 19)
* Format (page 20)
— Built-in formats (page 21)
* Dates and times (page 21)

% Email addresses (page 21)

* Hostnames (page 21)

4.2. string 17

Understanding JSON Schema, Release 2020-12

*

IP Addresses (page 21)

*

Resource identifiers (page 21)

*

URI template (page 22)
* JSON Pointer (page 22)

% Regular Expressions (page 22)

The string type is used for strings of text. It may contain Unicode characters.

In Python, "string" is analogous to the unicode type on Python 2.x, and the str type on Python 3.x.

B

In Ruby, "string" is analogous to the String type.

{json schema}

{ "type": "string” }

I

This is a string”

1

Unicode characters:

=

"Déja vu"

=

nn

=

4

=

42

18 Chapter 4. JSON Schema Reference

Understanding JSON Schema, Release 2020-12

4.2.1 Length

The length of a string can be constrained using the minLength and maxLength keywords. For both keywords, the value
must be a non-negative number.

{json schema}

{
"type": "string”,
"minLength”: 2,
"maxLength”: 3

}

=

AN

=

"AB"

=

"ABC”

=

"ABCD"

4.2.2 Regular Expressions

The pattern keyword is used to restrict a string to a particular regular expression. The regular expression syntax is the
one defined in JavaScript (ECMA 262 specifically) with Unicode support. See Regular Expressions (page 22) for more
information.

Note: When defining the regular expressions, it’s important to note that the string is considered valid if the expression
matches anywhere within the string. For example, the regular expression "p" will match any string with a p in it, such
as "apple” not just a string that is simply "p". Therefore, it is usually less confusing, as a matter of course, to surround
the regular expression in *. . . $, for example, "“p$", unless there is a good reason not to do so.

The following example matches a simple North American telephone number with an optional area code:

4.2. string 19

http://www.ecma-international.org/publications/standards/Ecma-262.htm

Understanding JSON Schema, Release 2020-12

{json schema}

"type": "string”,
"pattern”: "A(\\([0-91{3}\\))?[0-91{3}-[0-91{4}$"

-

"555-1212"

=

"(888)555-1212"

=

"(888)555-1212 ext. 532"

=

" (800)FLOWERS"

4.2.3 Format

The format keyword allows for basic semantic identification of certain kinds of string values that are commonly used.
For example, because JSON doesn’t have a “DateTime” type, dates need to be encoded as strings. format allows the
schema author to indicate that the string value should be interpreted as a date. By default, format is just an annotation
and does not effect validation.

Optionally, validator implementations can provide a configuration option to enable format to function as an assertion
rather than just an annotation. That means that validation will fail if, for example, a value with a date format isn’t in a
form that can be parsed as a date. This can allow values to be constrained beyond what the other tools in JSON Schema,
including Regular Expressions (page 22) can do.

Note: Implementations may provide validation for only a subset of the built-in formats or do partial validation for a
given format. For example, some implementations may consider a string an email if it contains a @, while others might
do additional checks for other aspects of a well formed email address.

In Draft 4-7, there is no guarantee that you get annotation-only behavior by default.

There is a bias toward networking-related formats in the JSON Schema specification, most likely due to its heritage in
web technologies. However, custom formats may also be used, as long as the parties exchanging the JSON documents
also exchange information about the custom format types. A JSON Schema validator will ignore any format type that it
does not understand.

20 Chapter 4. JSON Schema Reference

Understanding JSON Schema, Release 2020-12

Built-in formats

The following is the list of formats specified in the JSON Schema specification.

Dates and times

Dates and times are represented in RFC 3339, section 5.6. This is a subset of the date format also commonly known as
ISO8601 format.

* "date-time": Date and time together, for example, 2018-11-13T20:20:39+00: 00.
e "time": New in draft 7 Time, for example, 20:20:39+00: 00
» "date"”: New in draft 7 Date, for example, 2018-11-13.

* "duration”: New in draft 2019-09 A duration as defined by the ISO 8601 ABNF for “duration”. For example,
P3D expresses a duration of 3 days.

Email addresses

e "email”: Internet email address, see RFC 5321, section 4.1.2.

e "idn-email”: New in draft 7 The internationalized form of an Internet email address, see RFC 6531.

Hostnames

¢ "hostname": Internet host name, see RFC 1123, section 2.1.

e "idn-hostname"”: New in draft 7 An internationalized Internet host name, see RFC5890, section 2.3.2.3.

IP Addresses

e "ipv4": IPv4 address, according to dotted-quad ABNF syntax as defined in RFC 2673, section 3.2.
e "ipv6": IPv6 address, as defined in RFC 2373, section 2.2.

Resource identifiers

e "uuid”: New in draft 2019-09 A Universally Unique Identifier as defined by RFC 4122. Example:
3e4666bf-d5e5-4aa7-b8ce-cefe41c7568a

e "uri”: A universal resource identifier (URI), according to RFC3986.

e "uri-reference”: New in draft 6 A URI Reference (either a URI or a relative-reference), according to RFC3986,
section 4.1.

n

e "iri": New in draft 7 The internationalized equivalent of a “uri”, according to RFC3987.
e "iri-reference”: New in draft 7 The internationalized equivalent of a “uri-reference”, according to RFC3987

If the values in the schema have the ability to be relative to a particular source path (such as a link from a webpage), it is
generally better practice to use "uri-reference” (or "iri-reference”) rather than "uri” (or "iri"). "uri"” should
only be used when the path must be absolute.

4.2. string 21

https://tools.ietf.org/html/rfc3339#section-5.6
https://www.iso.org/iso-8601-date-and-time-format.html
https://datatracker.ietf.org/doc/html/rfc3339#appendix-A
http://tools.ietf.org/html/rfc5321#section-4.1.2
https://tools.ietf.org/html/rfc6531
https://datatracker.ietf.org/doc/html/rfc1123#section-2.1
https://tools.ietf.org/html/rfc5890#section-2.3.2.3
http://tools.ietf.org/html/rfc2673#section-3.2
http://tools.ietf.org/html/rfc2373#section-2.2
https://datatracker.ietf.org/doc/html/rfc4122
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986#section-4.1
http://tools.ietf.org/html/rfc3986#section-4.1
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987

Understanding JSON Schema, Release 2020-12

Draft 4 only includes "uri”, not "uri-reference”. Therefore, there is some ambiguity around whether "uri”
should accept relative paths.

URI template

e "uri-template"”: New in draft 6 A URI Template (of any level) according to RFC6570. If you don’t already
know what a URI Template is, you probably don’t need this value.

JSON Pointer

* "json-pointer"”: New in draft 6 A JSON Pointer, according to RFC6901. There is more discussion on the use
of JSON Pointer within JSON Schema in Structuring a complex schema (page 73). Note that this should be used
only when the entire string contains only JSON Pointer content, e.g. /foo/bar. JSON Pointer URI fragments,
e.g. #/foo/bar/ should use "uri-reference”.

* "relative-json-pointer”: New in draft 7 A relative JSON pointer.

Regular Expressions

* "regex": New in draft 7 A regular expression, which should be valid according to the ECMA 262 dialect.

Be careful, in practice, JSON schema validators are only required to accept the safe subset of Regular Expressions
(page 22) described elsewhere in this document.

4.3 Regular Expressions

* Example (page 23) I

The pattern (page 19) and Pattern Properties (page 31) keywords use regular expressions to express constraints. The
regular expression syntax used is from JavaScript (ECMA 262, specifically). However, that complete syntax is not
widely supported, therefore it is recommended that you stick to the subset of that syntax described below.

* A single unicode character (other than the special characters below) matches itself.

* .: Matches any character except line break characters. (Be aware that what constitutes a line break character is
somewhat dependent on your platform and language environment, but in practice this rarely matters).

e *: Matches only at the beginning of the string.

* $: Matches only at the end of the string.

* (...): Group a series of regular expressions into a single regular expression.
* |: Matches either the regular expression preceding or following the | symbol.
* [abc]: Matches any of the characters inside the square brackets.

* [a-z]: Matches the range of characters.

[*abc]: Matches any character not listed.

22 Chapter 4. JSON Schema Reference

https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/draft-handrews-relative-json-pointer-01
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Understanding JSON Schema, Release 2020-12

[*a-z]: Matches any character outside of the range.
» +: Matches one or more repetitions of the preceding regular expression.
¢ *: Matches zero or more repetitions of the preceding regular expression.

* ?: Matches zero or one repetitions of the preceding regular expression.

+7?, %7, 2?: The *, +, and ? qualifiers are all greedy; they match as much text as possible. Sometimes this behavior
isn’t desired and you want to match as few characters as possible.

(?!x), (?=x): Negative and positive lookahead.

* {x3}: Match exactly x occurrences of the preceding regular expression.

* {x,y}: Match at least x and at most y occurrences of the preceding regular expression.
* {x,}: Match x occurrences or more of the preceding regular expression.

o {x37?, {x,y}?, {x, }?: Lazy versions of the above expressions.

4.3.1 Example

The following example matches a simple North American telephone number with an optional area code:
{json schema}
{

"type": "string”,
"pattern”: "A(\\([0-9]1{3}\\))?[0-9]{3}-[0-91{43}%"

=

"555-1212"

=

" (888)555-1212"

=

"(888)555-1212 ext. 532"

=

" (800)FLOWERS”

4.4 Numeric types

4.4. Numeric types 23

Understanding JSON Schema, Release 2020-12

e integer (page 24)
* number (page 25)
* Multiples (page 26)

* Range (page 26)

There are two numeric types in JSON Schema: infeger (page 24) and number (page 25). They share the same validation
keywords.

Note: JSON has no standard way to represent complex numbers, so there is no way to test for them in JSON Schema.

4.4.1 integer
The integer type is used for integral numbers. JSON does not have distinct types for integers and floating-point values.
Therefore, the presence or absence of a decimal point is not enough to distinguish between integers and non-integers.

For example, 1 and 1.0 are two ways to represent the same value in JSON. JSON Schema considers that value an
integer no matter which representation was used.

In Python, "integer" is analogous to the int type.

L

In Ruby, "integer" is analogous to the Integer type.

{json schema}

{ "type": "integer"” }

L

L

-1

Numbers with a zero fractional part are considered integers

L

Floating point numbers are rejected:

24 Chapter 4. JSON Schema Reference

Understanding JSON Schema, Release 2020-12

L

3.1415926

Numbers as strings are rejected:

L

ngon

4.4.2 number

The number type is used for any numeric type, either integers or floating point numbers.

In Python, "number" is analogous to the float type.

B

In Ruby, "number" is analogous to the Float type.

{json schema}

{ "type"”: "number” }

o=

Simple floating point number:

T

Exponential notation also works:

=

2.99792458e8

4.4. Numeric types 25

Understanding JSON Schema, Release 2020-12

Numbers as strings are rejected:

‘ mgon

4.4.3 Multiples

Numbers can be restricted to a multiple of a given number, using the multipleOf keyword. It may be set to any positive
number.

{json schema}

"type"”: "number”,
"multipleOf” : 10

B

10

=

20

Not a multiple of 10:

=

23

4.4.4 Range

Ranges of numbers are specified using a combination of the minimum and maximum keywords, (or exclusiveMinimum
and exclusiveMaximum for expressing exclusive range).

If x is the value being validated, the following must hold true:
e x> minimum
e x> exclusiveMinimum

e x < maximum

26 Chapter 4. JSON Schema Reference

Understanding JSON Schema, Release 2020-12

¢ x < exclusiveMaximum

While you can specify both of minimum and exclusiveMinimum or both of maximum and exclusiveMaximum, it doesn’t
really make sense to do so.

{json schema}

{
"type": "number”,
"minimum”: @,
"exclusiveMaximum”: 100
3

Less than minimum:

=

minimum is inclusive, so O is valid:

NN K

99

exclusiveMaximum is exclusive, so 100 is not valid:

=

100

Greater than maximum:

=

101

4.4. Numeric types 27

Understanding JSON Schema, Release 2020-12

e if exclusiveMinimumis false, x > minimum.
e if exclusiveMinimumis true, x > minimum.
This was changed to have better keyword independence.

Here is an example using the older Draft 4 convention:

In JSON Schema Draft 4, exclusiveMinimum and exclusiveMaximum work differently. There they are boolean
values, that indicate whether minimum and maximum are exclusive of the value. For example:

{json schema }

"type": "number”,
"minimum”: @,

"maximum”: 100,
"exclusiveMaximum”: true

Less than minimum